MOAN; An Example of How to do a ROOT-based
DO Analysis

Roger Moore

Michigan State University

Analysis with ROOT

®* Why use ROOT for analysis?
® [nteractive: no 30 minute recompiles of DO executables
® Fast: highly optimised 1/0 means that ROOT jobs are 1/0 and not CPU limited

® Standard Environment: No need for entire D0 environment to look at a file if you have
compiled the libraries

® Probably need to learn ROOT to show plots in any case
® Txcellent support
® ..butits not all good
® Not the worlds most stable program!
® Uses interpreted 'C++" which has subtle (and irritating) differences from real C++

® C++ is not designed as a scripting language and it shows!

11/02/03 R. Moore, Michigan State

First Observations

® ROOT is missing one very useful PAW feature
® Inability to plot functions as if part of the data
® ie 'nt/pl 1.yfuncxfunc'
® Very useful for rapid testing of ideas
® D0 has many data formats!
® Thumbnail, RECO, custom physics groups...
® [t does not need another!

® ROOT's standard interface is buggy and very different from normal C++
(heavy F77 influence!)

® Conclusion:
® Need a package which solves these problems

11/02/03 R. Moore, Michigan State

® Authors: Jon Hays, Dave Evans and myself

® MOAN; Matched Object Analysis Network_
® Try using ROOT for a while and you'll see why we chose this!

®Design
® [nterchangeable use of pre-compiled and interpreted functions
® Simplified interface optimized for typical analysis tasKs
® Expandable without needing to modify existing code, just adding new

® Easy upgrading to new versions
® Configurable from the command line...being added

11/02/03 R. Moore, Michigan State

Getting Started

® Tirst you need to setup DO CVS access and checKout the Moan pacKage

> setup dOcvs

> CVS co Moan

cvs server: Updating Moan
U Moan/AUTHORS

U Moan/COPYING

® Now you also need to ensure that you have a valid DORunll environment setup
and that you have a more recent ROOT version setup

> setup DORunII p13.08.00
> setup root v3_03_09a -q KCC_4_0:exception:opt:thread

11/02/03 R. Moore, Michigan State 5

Getting Started

® IMPORTANTI: You need to ensure that your ROOT version is 3.03/09 (or maybe
greater)

® Buyg fixes this includes are required

® Now need to setup autoconf environment

autoheader
automake -a
autoconf

> automa%e
® Run the configure script to actually create the MaKefiles

® Must specify muo_cand version until package included in release

V V. V

> ./configure -with-muo_cand=p13-br-03

11/02/03 R. Moore, Michigan State 6

Getting Started

® Can also supply CVS tags to configure for all ‘DO pacKages used by MOAN
® Enables compatibility with any given ROOT file even if release has disappeared from disk_
® You have to map the release name to CVS tag though

® Configure script has several other options

® Debuy mode with --enable-debuyg
® Run configure with --help’ to see the full list
® Once configured, time to build the [ibraries...

> make

11/02/03 R. Moore, Michigan State 7

Getting Started

® Now you have built all the libraries for MOAN,
® All you need to do is load them into ROOT
® N\.B. You will need to change the paths shown below...

// Load

gSysten.
gSysten.
gSysten.
gSysten.
gSysten.

gSysten.

MOAN Libraries
Load("$RO0TSYS/1ib/1ibPhysics.so0");
Load("Moan/thumbnail/TMBTreeClasses.so0");
Load('"'Moan/analysis/analysis.so");
Load('"Moan/cuts/cuts.so'’);
Load('"'Moan/analysis/cuts/analysis-cuts.so');
Load("Moan/analysis/tmb/analysis-tmb.so");

® This should load all the libraries you need to instantiate all the MOAN classes

® Now you are ready to write an analysis...

11/02/03

R. Moore, Michigan State 8

Basic Concepts

® Analysis done using a tree-like structure of pre-compiled processor classes

® Each processor performs a single, simple action
® Matching
Extracting objects from input source

Filtering

Calculating invariant masses etc..

® Pre-compiled classes required because ROOT interpreter cannot do virtual functions

® Macros assemble groups of processors into a framework_to perform the actual analysis

® Allows framework to change without recompilation

® FEventually will add full set of methods to allow easy changing of the structure from the command
line...not all there yet

11/02/03 R. Moore, Michigan State 9

Dataflow

® Processors pass lists of objects between themselves

® Base object contains a 4-momentum and lists of matched objects

® Processors can add a list of matches to any object using their name as a Key

® ey ObJ .match("MuPlus") wil return the fist of objects matched to ‘obj’ by the

MuPlus’ processor

® \o new object formats needed if ROOT tree already has objects
J Y J
® Objectinterface template provided
® [nherits from given template argument and Moan's base physics object class

® ¢.g. ObjectInterface<TMBMuon> has exactly the same interface as a TMBMuon class as well as
that of a MOAN physics object

11/02/03 R. Moore, Michigan State 10

C++ Functions

®N\eed support for compiled and interpreted functions

® MaKes customization edsy

® ROOT has no concept of function pointers
® No support for interpreted virtual functions either!
® Solution: wrap all functions in pre-compiled classes
® Provide classes for both compiled (C++) and interpreted (ROOT) functions
® Templated but ROOT's use of templates requires prior Knowledge of all instances
® Adding more function classes easy but needs recompilation

® For interpreted functions this is handled automatically
® Just provide the name of the function, MOAN will do the rest

® Compiled functions need to use the wrappers though

11/02/03 R. Moore, Michigan State

11

Input Formats

® [nputs can be from any source

® Jo support a format you need a processor class that can extract objects from a file and feed them to the
processor framework_

® Several useful base classes provided to get access to data stored in ROOT Branches
® Currently code exists for dOanalyze and Thumbnail ROOT formats

® Only instantiate providers for the objects which you want

® Avoids unpacking unwanted data and speeds up program...

® Unfortunately, due to a bug in ROOT, this does not work_for Thumbnail ROOT files...yet

® Currently unpacKing only some of the data is a LOT slower than unpacKing all of it!
® Rene Brun e co aware of it, fix in next ROOT release

11/02/03 R. Moore, Michigan State 12

MakKing Plots

® Al object processors (ones containing a list of objects) can have plots attached to them

® Filled everytime the processor is run

® An intermediate DataAlgorithm class is used to provide maximum flexibility for plots

® ObjectProperty: instantiated with a function which is run on every inout object

® MatchProperty: instantiated with matched object list name and a function which is run on each pair
of objects

‘EventProperty: instantiated with a function which is given the entire list of input objects for that
event

® Other properties available or write your own!

11/02/03 R. Moore, Michigan State 13

MakKing Plots

® Data Algorithms plot the return values of functions

® ¢.4.a pT function attached to an ObjectProperty will plot the pT of the output objects of the
processor.

® Separate Plotter processor being written to support multiple input sources
® ¢.g. njets vs. nMuons

® 2D Plots supported
® single value vs. multiple values

® multiple values vs. multiple values if same number in each case

® Two different methods to add plots

add1DPlot (DataAlgorithm *,TH1 *
add2DPlot(DataAlgorithm *,DataAlgorithm *,TH2 *)

11/02/03 R. Moore, Michigan State 14

Simple Example: Muon Isolation

® Simple example macro to plot the isolation of muons in a Thumbnail Tree file

® First we need to open the data file and create a histogram to fill
® Standard ROOT, nothing new

// Open the data file

TFile *data=new TFile('"MyDataFile.root");

// Create the ECone Isolation histogram

TH1 *muisohl=new TH1F("MulsoH","#mu Isolation",
0.,10.,50);

® Create a provider to extract the muons from the file

// Create a provider of thumbnail muons
ObjectProcessor *muons=new tmb::MuonProvider;

11/02/03 R. Moore, Michigan State 15

Simple Example: Muon Isolation

® Now we need to define a function to calculate the muon's E-Cone Isolation

// Calculate E-Cone Isolation of a Muon
// Defined as 0.4-0.15 cone energies
double eConelso(void *dummy) {
moan: :0ObjectInterface<TMBMuon> *mu=dummy;
return mu->EInCone4()-mu->EInConel5();

}

® Create an object property data algorithm for it and add the plot to the provider

// Create the data algorithm for the isolation
DataAlgorithm *muisoalg=new ObjectProperty(eConelso);
// Add the plot to the muon provider
muons->addl1DPlot (muisoalg,muisohl);

11/02/03 R. Moore, Michigan State 16

Simple Example: Muon Isolation

® Finally we need a special Analyser processor

" Processor which runs the processor framework attached to it over the data provided

// Create the Analyser
moan: :Analvyser a("Muonlso",data);

a.addProcessor(muons); // Add the muon provider
® Create an object property data algorithm for it and add the plot to the provider

At this point we just need to run the analysis

® Call the analyser execute method

" TaKes optional arguments to limit the number of events to process and to sKip events

a.execute() // Run analysis on all data
® Histogram should now be filled...

11/02/03 R. Moore, Michigan State 17

Simple Example: Muon Isolation

"4 300
S £=pb MC
e 250 — —— Signal MC x30
2 L ' —=— Data
=200[—
s [
<
]

—t
S
=8

T
-
1

(3]
o
T T | 1T

_el!l!l!l!l!l!l!l!l!l!l!l!l!l
0 4 4 7 8 9 10

E-Cone 0.4-0.15 (GeV)

o
iy
N
(9%)
=
(3)]
»

11/02/03 R. Moore, Michigan State

Anatomy of a Processor

® Al processors are required to provide two methods

® Constructor to set up options and attach to child processors

* void doRun(void) which is called once (and only once) for each event that the

processor must process

® Object processors, ones providing a list of objects as an output have the following
methods

® (Constructor to set up options and attach to child processors just as for a normal Processor

* void proces sData(void) wrick replaces the 'doRun’ method from the standard

processor

* void addObject(PhysicsObject *) which adds the given object to the
output list

®Easy to write your own if you need to...

11/02/03 R. Moore, Michigan State 19

‘Event Selection

® Processors great for filtering objects but sometimes need to filter events
® ¢.g. plot this only for events with 2 muons with pT> 5GeV)/c
® MOAN provides two special classes to do this
® Decider: alters flow of the processor network_
® Selector: examines input data and gives a ‘true’ or 'false’
® Decider has three special methods
* void addSelector(Selector *)
* vold addPassProcessor(Processor *) adisa processor to run if the

selectors all return 'true’

* vold addFailProcessor(Processor *) adisa processor torun if any

selector returns false

® ObjectSelector to count input objects provided

11/02/03 R. Moore, Michigan State 20

Example: Dimuon Analysis

® More complex macro to select and plot invariant masses of different sign, isolated muons

from a TMB ROOT file

® First create providers for muons and jets

ObjectProcessor *muon = new tmb::MuonProvider;
ObjectProcessor *jets = new tmb::JetProvider("JCCA");

®Now define the function to select 'good" muons

// Returns 1 for a good muon

double goodMuon(void *dummy) {
moan: :0ObjectInterface<ITMBMuon> *mu=dummy ;
1f(mu->nseg()!=3) return O;

1f (mu->chisq()<0. || mu->chisq()>200.) return O;
return 1.;

}

11/02/03 R. Moore, Michigan State 21

Example: Dimuon Analysis

® ..and then another couple of functions to select positive and negatively charged muons

// Return 1 for anti-muons (mu+)

double muPlus(void *dummy) {
moan: :0ObjectInterface<TMBMuon> *mu=dummy;
return mu->charge()>0. ? 1. : O.;

}

// Return 1 for muons (mu-)

double muMinus(void *dummy) {
moan: :ObjectInterface<TMBMuon> *mu=dummy;
return mu->charge()<0. ? 1. : O.;

}

11/02/03 R. Moore, Michigan State 22

Example: Initial Framework

®*Now that we have the functions and providers we need to create filter processors and
attach them

ObjectProcessor *goodmu =

new moan: :FunctionFilter("GoodMu" ,muon, *goodmuon) ;
ObjectProcessor *mup =

new moan: :FunctionFilter("MuPlus", goodmu, *muplus);
ObjectProcessor *mum =

new moan: :FunctionFilter("MuMinus", goodmu, *muminus) ;

=
Muonerovider —
e >

11/02/03 R. Moore, Michigan State 23

Example: Calculating Masses

®Now we can create a processor to calculate the invariant mass of the mu+/- pairs

" Creates new ‘mass' objects from lists of mu+ and mu-

ObjectProcessor *mumumass =

new MassProcessor("MuMuMass",mup,mum) ;
® ..and then a filter processor to select ones around the upsilon mass

" Needs a new function also defined here

// Selects masses in range 8-12 GeV/c2
double upsilonMass(void *dummy) {

PhysicsObject *obj=dummy;

return (obj->p().M()>=8.0 && obj-—>p().M()<=12.0) ? 1. : O.;
}

ObjectProcessor *upsmass =
new moan: :FunctionFilter("UpsilonMass" ,mumumass,upsilonMass) ;
24

11/02/03 R. Moore, Michigan State

Example: Writing out Events

® 4t this point we have a processor which has a list of all the mu+/- pair masses close to
the upsilon
" Suppose we want to now save these events?

® VMOAN provides an output processor
" Will write out the current event from the input tree if the input processor has the given number of
objects (or more)
" Limited to only writing out data for which providers are instantiated

¢ ROOT limitation/bug, hopefully will be fixed...

Processor *upsoutput =
new moan: :OutputFilter("UpsilonOut" ,upsmass,1,
"upsilon.root");

11/02/03 R. Moore, Michigan State 25

Example: Adding Plots

® 70 add a plot first we need to create histograms...

TH1F *mumumhl = new TH1F("MuMuMass",

"#mu-#mu Mass',100, 0., 50.);
TH2F *mumumpth?2 = new TH2F("MuMuPTvM",

"#mu-#mu p_{T} vs. M", 60,0.,30., 100,0.,50.);
TH1F *upspthl = new TH1F("UpsilonPT",

"#Upsilon p_{T}",60, 0., 30.);

*Now we can add the plot using a data algorithms already supplied in the library to plot
masses and pT of input objects

mumumass->addl1DPlot (&oprop: :M, mumumhl) ;

mumumass->add2DPlot (&oprop: :pT, &oprop: :M,mumumpth?) ;
upsmass->add1DPlot (&oprop: :pT,upspthl);
11/02/03

R. Moore, Michigan State 26

Example: Running the Analysis

® To actually run the analysis on a file we need to create a top level Analyser processor and give
it the TTree or IChain to process

 ..and then add the top level processors that we need to run, in this case the upsilon output processor

moan: :Analyser a("Analysis",myTree);
a.addProcessor (upsoutput);

® Finally, to run the analysis we just call the Analyser's execute method with an optional
maximum number of events to process

// Run over no more than 1000 events
a.execute(1000);

® This will fill all the attached histograms

11/02/03 R. Moore, Michigan State 27

Example: Final Framework

Read from
—disk T

11/02/03 R. Moore, Michigan State 28

Muon Candidate

® Muon canditate integrated with a special provider

" Select version to use with switch to the configure script

® Provider requires uses other providers to get data needed by algorithm

MuonCandProvider (MuonProvider *muons,
JetProvider *jets,
TrackProvider *tracks,
VertexProvider *vertices,

GlobalProvider *global);
® Output is list of MuoCandidate wrapped objects

" [dentical to official MuonlID certified objects

" "LocalCentral’ muons only at the moment

11/02/03 R. Moore, Michigan State

29

How to Find out More...

® So far this tutorial is probably the best documentation for MOAN!

® However source code is carefully documented using doxygen-style comments
" Best place to look is in the C++ header files: *.hpp

® Code is still changing and source code is the one place guarenteed to be
uptodate!

® Current state is ~beta: most things work most of the time

" Still need to be willing to look at C++ code but should not need to delve into the innards
of ROOT!

11/02/03 R. Moore, Michigan State 30

Things To Do

® Lots of ideas for improvements...but not enough time to add them all!
" Outputing lists of objects and their matches

® Load back in a saved analysis and continue
" Make interface to Harry M's DO cuts package work...it compiles!

*moan: :Filter *mufilt = new
moan: :Filter("LowMassMu" ,musrc,cutfunc: :M<10.);

" More event level quantity support: more selectors
" Utility macros to set up simple frameworks

" Member function caller to avoid need to write functions and object properties for every method of a
class

¢ In and compiles, haven't had a chance to test it yet...

® People are welcome to jump in and add their own code

" So far development driven by authors’ analyses

11/02/03 R. Moore, Michigan State 31

Conclusions

® ROOT based analysis works
" Being used for SUSY like-sign dimuon analysis and others

® Major advantage is speed
" Rapid, interactive analysis
" Fast: even with current bug takes ~30-50ms/event on 1GHz pentium 111 CPU
* When buyg fixed expect faster processing

® Would be nice if DO could agree on ONE format for ROOT that everyone could use
" d0analyze, TMBTree, custom physics group formats all in mix
" Common object interface hierarchy would be EXTREMELY useful

" ..but needs lot of agreement and common effort

11/02/03 R. Moore, Michigan State

32

